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Abstract

We engineered a mammary-specific knockout model for Breca7 deficiency that also lacks the majority of one chro-
mosome 11 to determine whether tumor susceptibility loci reside on this chromosome that cooperate with the
loss of Brecal during mammary cancer formation. Brcal-deficient females that are haploinsufficient in 60 cM of
chromosome 11 exhibited accelerated mammary tumorigenesis in comparison to Brcal conditional knockout
mice. On the histopathologic level, these tumors were either adenocarcinomas or benign, inflammatory lesions.
Like human BRCA1-associated breast cancers, mammary carcinomas in this new mouse model were ERa-negative
and of basal epithelial origin. Brcal deficiency and haploinsufficiency in 60 cM of chromosome 11 caused wide-
spread genome instability as determined by spectral karyotyping analysis. In addition to the verification of the
long-range deletion event, the spectral karyotyping analysis revealed that the duplication of the genome and higher
degree of aneuploidy occur rather late in tumor progression. Despite chromosomal rearrangements near the 7rp53
locus as determined by fluorescence in situ hybridization, the 7rp53 gene was transcriptionally active. The analysis
of the coding sequence and expression pattern of p53 and p21 suggests that loss-of-heterozygosity of 7rp53 caused
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by somatic mutations contributes to accelerated mammary tumorigenesis in this model.

Introduction

Germ line mutations of the breast cancer—associated gene-1 (BRCAI)
are responsible for a 55% to 85% cumulative lifetime risk of breast can-
cer by age 70 [1-3]. BRCALI is a multidomain protein that is suggested
to play a role in a variety of cellular functions including maintenance
of genomic stability, DNA double-strand break repair, transcriptional
regulation, and cell cycle and spindle checkpoint control [4,5]. Although
the precise mechanisms for BRCA1’s ability to prevent breast cancer
initiation are not clearly defined, targeted gene deletion models of Breal
provided important insights into the biological functions of this gene for
embryonic development, tissue homeostasis, and cancer initiation [6].
Odur previous studies on a conditional knockout model of Brcal demon-
strated that the ablation of this tumor-suppressor gene from the mam-
mary epithelium is sufficient to induce neoplastic transformation and
mammary cancer after a long latency. Haploinsufficiency in p53 greatly

accelerates mammary carcinogenesis in this model for hereditary human
breast cancer [7].

Epidemiological evidence in humans as well as genetic studies in
Brcal-deficient murine cancer models suggest that subsequent somatic
mutations, including p53 and possibly additional modifier loci, are re-
sponsible for variations in the latency of Breal-associated mammary
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tumorigenesis. Although BRCAI gene mutations are rare in sporadic
breast cancers, the expression of full-length BRCAI transcripts and the
protein is reduced in a subset of sporadic malignancies [8,9], suggest-
ing that genetic or epigenetic alterations in noncoding, regulatory re-
gions near BRCAI play a role in sporadic breast cancer. On the basis of
a meta-analysis for commonly deleted regions in sporadic breast cancers
that also identified a modified chromosomal segment on 17q21 near
BRCAI [10], Biggs et al. [11] suggested that there might be tumor-
suppressor genes near Breal that may play a role in cancer initiation.
The latter research team used Cre/loxP-based chromosome engineering
as a method to delete large portions (up to 5 Mb) of the mouse chromo-
some 11, which contains the Breal and p53 genes, to identify additional
putative tumor susceptibility genes that cooperate with these more
prominent tumor-suppressor loci. These large deletions, however, tend
to cause lethality in homozygous mutants, and segmental haploidy in
the germ line can cause abnormalities in other organs that may interfere
with the analysis of tumor susceptibility loci in specific adult tissues such
as the mammary gland.

To address whether putative tumor susceptibility loci on chromo-
some 11 are able cooperate with the loss of Breal during mammary
carcinogenesis, we generated a mammary-specific knockout of Breal
that is also haploid-deficient in nearly the entire chromosome 11.
Females deficient in Brecal that also lack approximately 60 <M of
one chromosome 11 develop mammary cancer after a significantly
shorter latency compared to females that carry only a conditional
mutation of Breal. Like familiar BRCA1-associated breast cancers
in humans, the adenocarcinomas that appeared in Brcal-deficient
mice that are haploinsufficient in chromosome 11 are ERa-negative
and of basal epithelial origin. Unlike previous reports, these lesions
do not exhibit an up-regulation of ErbB2. Using spectral karyotyping
(SKY) analysis, we demonstrate that these mammary cancers have a
highly unstable genome that includes chromosomal rearrangements
in the central region of the homologous chromosome 11, which did
not undergo the long-range deletion event. Using fluorescence iz situ
hybridization (FISH), we determined that the chromosomal breaks
occurred near the 77p53 locus. However, the 77p53 gene itself was
not translocated to other chromosomes and was transcriptionally ac-
tive. The sequence analysis of the coding region of p53 suggests that,
in a significant subset of cases, loss-of-heterozygosity of 77p53 caused
by somatic mutations is a contributing factor to accelerated tumori-
genesis in this breast cancer model.

Materials and Methods

Mice

The generation of WAP-Cre and MMTV-Cre transgenic lines as
well as the conventional Wap knockout mice and the Breal condition-
al knockout model was described previously [7,12,13]. All animals
used in this study were treated humanely and in accordance with in-
stitutional guidelines and federal regulations.

Whole Mount Staining of Mammary Glands and Histologic
Analysis of Mammary Tumors

Protocols for the preparation of mammary gland whole mounts and
hematoxylin and eosin—stained sections of formalin-fixed tissues were
described previously [14]. The entire hematoxylin and eosin—stained
sections of representative mammary gland lesions were digitized at
high resolution using a whole-slide scanning microscope (Zeiss, Jena,
Germany) with image capture software from MicroBrightField, Inc.

Composite images were analyzed and annotated by Dr. Bob Cardiff
using an Internet-based image database with integrated virtual micros-
copy software (Zoomify) at the Center for Comparative Medicine,
University of California, Davis.

Immunostaining

A basic protocol for immunohistochemistry and immunofluores-
cent staining of paraffin-embedded mammary gland specimens was
described previously [15]. We used the following primary antibodies:
a-CK5 (1:500 dilution), a-CK6 (1:500 dilution), and a-CK14
(1:1000 dilution) from Covance (Berkeley, CA); a-CK8 (TROMA-I;
1:250 dilution) from the Developmental Studies Hybridoma Bank
at the University of lowa, lowa City, IA; a-SMA (NCL-SMA; 1:50 di-
lution) from Novocastra Laboratories, Ltd (Newcastle upon Tyne,
United Kingdom); a-pStat3 (58E12, 1:50 dilution) from Cell Signal-
ing Technology (Danvers, MA); and a-ERa (MC-20, 1:500 dilution)
and a-p21 (C-19, 1:200 dilution) from Santa Cruz Biotechnology
(Santa Cruz, CA). The cytokeratins were visualized with mouse-specific
or rabbit-specific Alexa Fluor 594 and 488—conjugated secondary anti-
bodies (1:1000 dilution) from Invitrogen (Carlsbad, CA). The slides
were mounted with Vectashield containing 1.5 pug of 4’,6-diamidino-
2-phenylindole (DAPI, Vector Laboratories, Inc., Burlingame, CA).
For immunohistochemistry of ERa, pStat3, and p21, we used the
corresponding biotinylated secondary antibodies (1:200 to 1:1000 dilu-
tion) and Vectastain Elite ABC kit (Vector). 3,3-Diaminobenzidine
(DAB) was used as a chromogen, and slides were counterstained with
Mayer’s hematoxylin. Bright field and fluorescence images of his-
tologic slides were taken on a Zeiss Axio Imager microscope equipped
with a SPOT FLEX camera (Diagnostic Instruments, Inc., Sterling
Heights, MI).

Spectral Karyotyping and FISH

The SKY and FISH analyses were performed on short-term cul-
tured mammary cancer cells that were derived from primary tumors
similar to a published protocol by Medina and Kittrell [16]. The anno-
tation of the karyotypes was performed at the Cytogenetic Core facility
of the VanAndel Institute, Grand Rapids, MI. The composite karyo-
types for each tumor were assigned based on the individual analysis of
more than 20 metaphases. The FISH analyses were carried out at the
Genome Imaging Facility at Albert Einstein College of Medicine. The
genomic probe for the 7ip53 locus was kindly provided by Thomas
Ried (National Institutes of Health, Bethesda, MD). The method-
ology for the chromosomal labeling of 77p53 and Septin 9 (Sepr9) were
described previously [7,17].

Reverse Transcription—Polymerase Chain Reaction and
Sequencing of the Trp53 Coding Region

To determine the transcriptional activation of the 77p53 gene, we
isolated total RNA from tumor cell pellets using standard guanidinium
thiocyanate—phenol—chloroform extraction. A SuperScript II kit from
Invitrogen with oligo dT primers was used to perform the first strand
synthesis. The primer sequences and PCR conditions for the ampli-
fication of a 1166-bp region of the 77p53 coding sequence were de-
scribed previously [18]. Polymerase chain reaction products were
gel-purified and cloned into the TOPO TA vector (Invitrogen). A mini-
mum of three clones per tumor sample were sequenced from both direc-
tions using standard M13 forward and M13 reverse primers. The
contigs were assembled and analyzed using the Sequencher 4.7 software
(Gene Codes Corporation, Ann Arbor, MI).
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Western Blot Analysis

The preparation of whole-cell extracts of clarified cell lysates and the
experimental procedures for Western blot analysis were described pre-
viously [19]. The following antibodies were used: o-ActB (I-19; 1:2000
dilution) and a-p53 (FL-393; 1:1000 dilution) from Santa Cruz Bio-
technology; o-p21 (sx118; 1:1000 dilution) from BD Biosciences (San
Jose, CA); o-ErbB2 (1:200 dilution) from Abcam (Cambridge, MA);
and a-p19/Arf (Ab-1; 1:1000 dilution) and a-Mdm2 (Ab-2; 1:1000
dilution) from EMD Biosciences (San Diego, CA).

Results

Accelerated Mammary Tumorigenesis in Brcal-Deficient
females That Lack 60 cM of Chromosome 11

To determine whether tumor susceptibility loci reside on chromo-
some 11 that cooperate with the loss of Breal during mammary cancer
formation, we have engineered a mammary-specific knockout model
for Brcal deficiency that also lacks nearly the entire chromosome 11.
Figure 14 illustrates the generation of a mouse chromosome 11 that
contains JoxP sites that are approximately 60 ¢M apart. The targeted
replacement of exon 1 of the whey acidic protein (Wap) gene with a
floxed neomycin selection marker was described previously [13]. The
Wap gene is located in close proximity (approximately 0.5 ¢M) to the
centromere of chromosome 11. Similar to the Wap locus, the Breal
gene resides on the antisense strand but at a distance of approximately
60.5 cM away from the centromere. We previously described the gen-

eration of a Breal conditional knockout allele that contains loxP sites
adjacent to exon 11 [7]. Homozygous Breal floxed (Brea ™) male mice
were bred with females containing the Wap knockout locus to generate
female mice that carry both targeted chromosomes 11. These females
were subsequently mated with homozygous Wap knockout (Wazp™*”*)
males to generate Wizp™"* offspring that also carry a Breal floxed allele
as a result of crossover events between both genetically modified chromo-
somes 11 during meiosis in the oocytes. The resulting Brea /" Wap™*
mice were bred to obtain the floxed chromosomes 11 in homozygosity
(Brea /" V%zp”m/”e”). The presence of the floxed loci on both homolo-
gous chromosomes prevents the segregation of the targeted loci through
subsequent crossover events that occur quite frequently within the 60-cM
region between Wap and Breal. Because pups thrive poorly on Wap-
deficient dams [13], the maintenance of this new strain also requires a
prolonged lactation period of at least 4 weeks.

To generate a mammary-specific knockout of Breal and a long-
range deletion on chromosome 11, Brea ™ Wap™*™* females were
crossed with MMTV-Cre (line A) or WAP-Cre transgenic males that
also possess two Breal floxed alleles. This breeding strategy avoids the
segregation of the mutant Breal and Wap loci during the introduction
of the Cre transgenes. MMTV-Cre and WAP-Cre Brea V™ Wap*"
males were subsequently mated with Brea " Wap™*"*° females in an
attempt to create mice that carry the respective Cre transgenes in a ho-
mozygous chromosome 11 floxed background. This strategy worked
for the WAP-Cre transgene in the expected mendelian fashion, but we
only obtained seven viable MMTV-Cre Brea /™ Wap™"* mice after
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Figure 1. Generation of conditional knockout mice that are Brcal-deficient and that lack 60 cM of chromosome 11. (A) A crossover event
between the two homologous chromosomes 11 that carry a targeted Wap locus and a conditional knockout allele of Brea7, respectively,
produces a single chromosome with the two targeted loci. Because Wap and Brcal are directly oriented on the antisense strand of
chromosome 11, the expression of Cre recombinase is able to catalyze two short-range excision events (i.e., exon 11 of Brcal and the
PGK-neo selection marker of Wap) and a long-range deletion of approximately 60 cM between the two targeted loci. (B) A mammary-
specific deletion of Brca’ and a very large portion of chromosome 11 is achieved in experimental animals that carry the MMTV-Cre or
WAP-Cre transgenes in a homozygous Brcal floxed background where one or both homologous chromosomes 11 contain a targeted
Wap locus (Wap*?7¢° and Wap"°"e°, respectively). MMTV-Cre and WAP-Cre—based Brecal conditional knockout females that carry two
wild type Wap alleles served as controls.
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genotyping more than 40 litters. Three of the seven MMTV-Cre
Brea P Wap™™ mice succumbed to T-cell proliferative disorders
and exhibited a wasting syndrome between the ages of 4 and 7 months.
One mouse developed a mammary cancer, one mouse died during a
surgical procedure, and two mice are still alive to date. Because the
MMTV-Cre transgene is not located on chromosome 11 and the
MMTV-Cre-mediated deletion of Brcal does not cause embryonic
lethality, this observation might suggest that the long-range deletion
event might occur quite efficiently during embryogenesis in various
cell types that efficiently express Cre under the MMTV-LTR [20]. Be-
cause of embryonic lethality, we maintained MMTV-Cre Brea "/’
Wap""* along with WAP-Cre Breal™" Wap"“"* females as the two
experimental groups (Figure 1B) and compared their tumor latency to
the two control cohorts of regular Brcal conditional knockouts (i.e.,
MMTV-Cre and WAP-Cre Brea’’/" mice). All females were multi-
parous and had delivered two to three litters. As illustrated in Figure 2,
the MMTV-Cre-mediated long-range deletion event on just one of
the two homologous chromosomes 11 was sufficient to accelerate
Brcal-associated mammary tumorigenesis. All experimental animals
had succumbed to mammary cancer by the age of 14 months
(Figure 2A4). The mean tumor latency was shortened by approximately
4 months (Figure 2B). The most noticeable difference was observed in
the WAP-Cre—based experimental group. We previously reported that,
in comparison to MMTV-Cre Breal’”"" females, WAP-Cre—based con-
ditional Breal knockout mice have a reduced incidence in mammary
tumor formation and a prolonged latency [7]. This fact was confirmed
in our current control cohort where only very few WAP-Cre Brea " fe-

males developed mammary cancer by the age of 18 months (Figure 2C).
The likelihood that a long-range deletion event occurs on one of
the two homologous chromosomes 11 had a significant impact on the
tumor-free survival of the experimental females, and their average life ex-
pectancy was shortened by approximately 10 months (Figure 2, C and D).

Mammary Tumors That Arise in MMTV-Cre and
WAP-Cre—Mediated Chromosome 11 Deletion Models
Exhibit Differences in Their Histopathologic Features

The mammary-specific deletion of Breal causes a selective growth
inhibition of Brcal-deficient epithelial cells and impaired mammo-
genesis [7]. The severity of the phenotypic abnormalities during ductal
elongation and alveologenesis can vary between animals and depends
greatly on the expression pattern of the Cre recombinase driven by
the MMTV-LTR or the Wap gene promoter. None of the MMTV-
Cre Breal’™" Wap*"* females was able to lactate during the first
and second gestation periods owing to impaired alveologenesis
(Figure 3A), and some animals also exhibited a reduction in ductal
branching (not shown). The developmental abnormalities in these
experimental animals were probably a direct consequence of Breal
deficiency in basal and luminal epithelial cells throughout the develop-
ing ductal system [20]. In contrast, the expression of the WAP-Cre
transgene occurs mainly during alveolar development. This transgene
is also known to exhibit a mosaic expression pattern, which, depending
on the deleted gene, can result in a negative selection of knockout
cells. These knockout cells can be replaced in the developing alveolus
by proliferating alveolar progenitors that do not express Cre [15].
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Figure 2. Tumor-free survival of Brcal-deficient females that lack 60 cM of chromosome 11 (MMTV-Cre Brea 1™ Wap“?"®° n = 12, and
WAP-Cre Brcal™ Wap™°"¢°, n = 7) in comparison to Brcal conditional knockout mice (MMTV-Cre Brca?™ n = 17, and WAP-Cre
Brca1™ n = 15). Mice were monitored twice weekly for a period of 18 months and killed when a tumor became palpable. (A, C)
Kaplan-Meier curves. (B, D) Mean age of onset of palpable mammary tumors (horizontal bars). Each marker represents the age of onset

of the first palpable tumor per mouse.
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Figure 3. Differences in mammogenesis and the histopathology of
mammary tumors in MMTV-Cre-based (A, C, E) and WAP-Cre—
based (B, D, F) Brcal-deficient females that also carry a 60 cM
floxed region of chromosome 11. (A-D) Carmine red-stained
mammary gland whole mounts in postpartum dams several hours
after delivering the offspring (A, B) and in 1-year-old multiparous
females (C, D). LN indicates lymph node. Bar, 1 mm. Multifocal
lesions were only present in the MMTV-Cre-based deletion models
(C, arrows). (E, F) Hematoxylin and eosin—stained sections of mam-
mary tumors. Bar, 100 um.

Therefore, most WAP-Cre Breal™ %p’mmm females were able to lac-
tate despite a reduction in the overall alveolar density (Figure 3B). The
subsequent analysis of mammary glands from parous, tumor-bearing
animals showed that many MMTV-Cre Breal’™ Wap"”" females ex-
hibited multifocal lesions throughout the ductal tree (Figure 3C), and a
subset of these animals had several palpable mammary cancers. Because
multifocal tumorigenesis was a rare event in the control cohort, this
observation suggests that the MMTV-Cre—mediated long-range dele-
tion event occurs in a significant subset of epithelial cells. Similar to
the controls, WAP-Cre Brea ™" Wap""* females generally did not
exhibit multiple macroscopic and microscopic lesions (Figure 3D). This
was likely the result of a more restricted expression of the WAP-Cre
transgene in luminal epithelial cells of developing alveoli during preg-
nancy and lactation. Also, the histopathologic analysis of large mam-
mary cancers revealed important differences in both models. The
mammary cancers that arose in the MMTV-Cre Brea ™" Wap*""
females were predominantly adenocarcinomas that invaded into the
surrounding stroma (Figure 3E). In contrast, a significant number of
WAP-Cre—mediated mammary tumors were classified as benign lesions
(Figure 3F). These palpable tumors were soft and contained large in-
flammatory regions and reactive hyperplasia. On the histopathologic
level, these lesions exhibited features of severe acute and chronic mastitis
with fibrosis. These large mammary tumors, which tend to appear in
WAP-Cre Breal™ Wap"*" females within a month after weaning

of their last litter, had a significant negative impact on the general health
of the animals that consequently needed to be euthanized. None of
the WAP-Cre Breal™ control mice exhibited such distinct mammary
lesions. We are currently unable to fully explain why only WAP-Cre
Breal™" Wap"** females with accelerated mammary tumorigenesis
predominantly developed benign, inflammatory lesions. The Staz3
gene, which is located in very close proximity to Breal, is required for
the initiation of apoptosis of differentiated alveolar cells after weaning
of the young. Females that lack Sz423 in secretory epithelial cells exhibit
a delay in mammary gland remodeling and have a higher incidence in
mastitis [21]. We therefore considered that a long-range deletion event
on both homologous chromosomes 11 might result in Stat3-deficiency
in differentiated epithelial cells. In support of this notion, active Stat3
was not present in most epithelial cells within hyperplastic lesions from
WAP-Cre Brea?™ Wap"* females. In contrast, nuclear Stat3 was ex-
pressed in nearly all fibrous stromal cells adjacent to these benign lesions
(Figure W1, A and B). However, we never observed impaired remodel-
ing and prolonged survival of a significant subset of secretory epithelial
cells throughout the mammary glands of WAP-Cre Breal™" Wap™"
females immediately after weaning of the offspring. This suggests that
such long-range recombination events occur rarely and do not lead to
widespread milk stasis and mastitis.

Mammary Cancers That Are Deficient in Brcal and
Haploinsufficient in Chromosome 11 Express Basal
Epithelial Cell Markers

The histopathologic examination of large mammary tumors that
arose in the WAP-Cre Brea /! Wap" " females revealed that these
tumors were mostly benign, inflammatory lesions. A subsequent analy-
sis of expression patterns of cytokeratins (CKs) 5, 6, 8, and 14 as well
as smooth muscle actin (SMA) showed that all different epithelial sub-
types were present in these hyperplastic and fibrocystic lesions (not
shown). We therefore focused our attention on the expression of these
markers in the invasive mammary cancers that predominantly arose in
the MMTV-Cre Brea?™ Wap"”" mice. These cancer cells expressed
low levels of CK5 compared to adjacent normal epithelial cells
(Figure 4A), and they expressed moderate levels of CK6 (Figure 4B).
The bulk of these tumors contained many cancer cells that expressed
high levels of CK14 but not CK8 (Figure 4, C and D). In addition,
we used mammary cancers from MMTV-nex mice as positive and neg-
ative controls for the examination of these cellular markers. In contrast,
MMT V-neu tumors arise in the luminal epithelial compartment, and
consequently, they express higher levels of CK8 and little CK14 com-
pared to adjacent normal mammary ductal cells (Figure 4, £ and F).
Analogous to CK14, MMTV-neu—overexpressing mammary cancer
cells exhibited very little expression of SMA (Figure W2B). The expres-
sion of this myoepithelial marker was significantly higher in Brcal-
deficient mammary cancers, in particular, in cells that invaded into
the stroma. Within the bulk of the tumor, the SMA staining was some-
what reduced and seemed to be weaker than the immunoreactivity in
well-differentiated ductal cells that were engulfed by the invading cancer
cells (Figure W2A). Collectively, the analysis of the cytokeratin markers
and SMA expression pattern shows that mammary cancers that are
deficient in Brcal and haploinsufficient in chromosome 11 are of basal
epithelial origin, and they are distinctly different from Her2/neu—
overexpressing mammary cancers and benign lesions that arose in the
WAP-Cre Breal’™ Wap"" females. Like Her2/neu—overexpressing
tumors, mammary cancers from MMTV-Cre Brea ™" Wap""*** females
lack the expression of the estrogen receptor (Figure W2, C and D).
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However, ERa-positive mammary epithelial cells were present in hyper-
plastic lesions in WAP-Cre Breal/"! ‘Vapm/"m mice (Figure W2E).

Brcal Deficiency and Haploinsufficiency in 60 cM of
Chromosome 11 Cause Widespread Genome Instability
Previous studies demonstrated that Brcal-deficient mammary can-
cer cells were aneuploid, and chromosomal translocations as well as
loss and gain of chromosomal regions were observed [22,23]. To as-
sess the extent of genome instability in mammary cancers that arose
in MMTV-Cre Breal’’f %pw’/m’” females, we performed a SKY
analysis on short-term cultured mammary cancer cells that were de-
rived from two tumor-bearing animals (Figure 5). The SKY analysis
confirmed that these cancers originated from mammary epithelial
cells that were haploinsufficient in a very large portion of one chro-
mosome 11, suggesting that such large segmental deletion events of
more than 60 cM can be achieved through Cre-mediated recombi-
nation. According to information obtained from the Mouse Genome
Informatics database, more than 1500 annotated genes and expressed
sequences reside between Wap and Breal on chromosome 11. The
fact that neoplastic mammary epithelial cells are able to survive with
a single copy of such a large number of genes is remarkable, and this
finding clearly underlines the extraordinary plasticity that cancer cells
possess. It might also suggest that mammary epithelial cells are capa-
ble of developing mechanisms that will allow them to compensate for
the lack of important loci that are expressed in these cells. Normal

Figure 4. Mammary cancers that are deficient in Brcal and haplo-
insufficientin chromosome 11 are of basal epithelial origin. Immuno-
staining of cytokeratins 5 (A), 6 (B), 14 (C, E), and 8 (D, F) using Alexa
Fluor 594-conjugated secondary antibodies (red) in mammary can-
cers from MMTV-Cre Brea1™ \Wap"¥"°° females (A-D) and Her2/
neu—overexpressing controls (E, F). The slides were counterstained
with DAPI (blue nuclei). Arrows in panels A and E indicate the positive
staining of cytokeratins 5 and 14 in normal mammary epithelial cells
adjacent to the primary neoplasm. Bar, 100 um.

cells in other tissues and organs might not have that ability, and they
express different genes located at chromosome 11 that are essential
for their survival. For example, segmental deletions and the resulting
haploidy of just 3 to 4 cM within the same region of chromosome 11
cause early embryonic lethality [24]. In addition, mutagenesis screens
have identified 59 lethal mutations between the 77p53 gene and the
Wni3 locus, which resides approximately 2.5 cM distal of Breal [25].

Besides confirming the long-range deletion event, the SKY analysis
and examination of more than 20 metaphase spreads per tumor also
demonstrates that Breal deficiency and chromosome 11 haploinsuffi-
ciency cause widespread genome instability with numerous chromo-
somal aberrations that are also summarized in Table 1. A comparison
of the specific aberrations between 2n and 4n cells [for example, the
translocation event T(8C1;11C)] shows that the duplication of the
genome and a higher degree of aneuploidy occur rather late in tumor
progression. In addition to the long-range deletion event, both mam-
mary cancers exhibited chromosomal breaks and translocations within
the central region of the homologous chromosome 11, which is known
to contain the 7ip53 tumor-suppressor gene. We used FISH analysis to
determine whether the 77p53 locus was affected or lost as a consequence
of the chromosomal rearrangements (Figure 6). In addition to the 77p53
probe and the chromosome 11 paint, we used a genomic probe encom-
passing the Seprin 9 (Spet9) locus to label the distal region of chromo-
some 11. This particular chromosomal segment, which is orthologous
to human 17q25.3, has been reported to be amplified and overexpressed
in a subset of murine adenocarcinomas and human breast cancer cell
lines [17]. The results of this study show that the chromosomal breaks
and translocations seemed to have occurred in both tumors in close
proximity of the 77p53 locus. In addition, the dissociation of 77p53
from the Sepz9 locus indicates that, unlike the distal region of chro-
mosome 11, the p53 gene itself was not translocated. Because Sepz9 is
located outside the long-range deletion event, it was still present on the
two short chromosomes 11 in 4n metaphase spreads.

Somatic Mutations in p53 Contributed to Brcal-Associated
Mammary Tumorigenesis

The previous work on the mammary-specific Brcal deletion model
shows that rearrangements in chromosome 11 and aberrant p53 ex-
pression contribute to neoplastic transformation [7]. In accordance
with this finding, Weaver et al. [23] reported that Brcal-deficient
mammary cancers showed a loss of the proximal portion of chromo-
some 11, which may have included the 7ip53 gene. Because both
tumors that were examined by SKY and FISH exhibited chromosomal
breaks and translocations within the central region of chromosome
11, we assumed that these translocations might have affected the ex-
pression of p53. Surprisingly, the results of a reverse transcription—
polymerase chain reaction assay show that this gene is transcriptionally
active in these two and two additional cancers (Figure 74). One of four
tumors examined expresses a p53 protein, which seems to be transcrip-
tionally inactive based on the lack of p21 expression (Figure 7B). The
notion that this tumor contains a somatic mutation in the coding re-
gion of 7rp53 is supported by the fact that the p53 protein is highly up-
regulated. HC11 cells that possess a transcriptionally inactive mutant
of p53 and that lack p21 expression were used as appropriate controls.
After examining the expression of p53, we sequenced the entire coding
region of the p53 transcripts in the four different cancer cases (Table 2).
Somatic mutations were detected in three mammary cancers, and
two of these mutations lead to a premature termination of the coding



Neoplasia Vol. 10, No. 12, 2008

Chromosome 11 Haploinsufficiency & Mammary Cancer

Triplett et al. 1331

8717

sl oBed nlﬂl[] v!f slell
8.0 8 #8 en

o@ s~ *Hem.

. D‘E 'B.: a: 'E]mm[]._ .BH.I]": »H “u
o

*O vHe H

4n

*l»Qd

slelen ol oHeBeB.a sHsEsl sEMI0H 80 eBsmenen
SeAeEeH.c. -u. 8A%H «B. +H o0 0. #Helen -a. »B42.8

#H 8l cm - #d9H-E 3 «p sAsHT *EeBE: L vHeR s8R

Bep vHHHeB

10725
"ees
(AL LL L
- . -

4n

1 I
L]
1

«BédeE %0

ALl
.glo

[2 P93 PN S I o
8 S0

e Qo
Pan

Figure 5. The SKY analysis of adenocarcinomas from two MMTV-Cre Brea1™” |Wap*?"°° females. Arrows indicate chromosomes 11 in
both karyotypes that underwent Cre-mediated long-range deletion events. In addition, the SKY analysis revealed that both homologous
chromosomes 11 carried translocations with chromosomes 8 and 14, respectively.

region. Tumor 8717, which expresses the nonfunctional p53 protein,
exhibited a deletion of three nucleotides that caused the absence of
a single amino acid (R246) from the DNA binding domain of p53.
We were unable to identify a somatic mutation of p53 in tumor
10725, and the underlying alteration of the function of the encoded
p53 protein (as assessed by the lack of p21 expression) remains elusive.
Neither the down-regulated expression of p19/Arf (Cdkn2a) nor the
overexpression of Mdm2 contributed to the functional inhibition of
p53 in all four cancers (Figure 7B). It should also be noted that the
examination of p53 and p21 expression can be skewed by the presence
of stromal cells within the primary cancer cell cultures. In one instance,
this was evident in explanted tumor cells of from animal 11704, which
exhibited a weak expression of p21 due to the presence of fibroblasts.
P21, however, could not be detected by immunostaining in the nuclei
of neoplastic epithelial cells of the corresponding primary lesion from
this animal (Figure W3). In summary, our study shows that, despite
chromosomal rearrangements in the central portion of the chromo-
some 11, which did not undergo Cre-mediated excision, the 77p53
locus was still transcriptionally active. Somatic mutations in p53 were
responsible for the absence or functional inhibition of this tumor
suppressor in a subset of Brcal-associated mammary cancers in our
animal model.

Human Brcal-associated breast cancers more frequently exhibit a
basal phenotype, and they lack expression of ERa, PR, and ErbB2
[26-28]. In contrast, Brodie et al. [22] reported that most Breal-
deficient mammary tumors in mice overexpressed ErbB2. In addition

to this apparent inconsistency between humans and mice, we also
asked whether the expression of ErbB2 could have been altered by
the long-range Cre-mediated deletion event or the observed translo-
cations that involve the homologous chromosome 11. According to

Table 1. Composite Karyotypes of Two Mammary Cancers After Examination of More Than 20
Metaphases Per Tumor Using SKY Analysis.

Composite karyotype of tumor 8717

2n cells: 40,XX[cp8]/38,X,Der(4)T(1E;4D3)[6],Del(4D)[2],+Del(6B)[8],-7[8], Del(8C3)[8],T
(8C1;11C)[8],Dic(9A.13A)[8],-10[3],Del(10A)[3],Del(10C)[2], Del(11A2-D)[8],+Del(12C)
[3],Der(12;12)T(12A2;12A1)Del(12A2)[8],Del(13C)[8], Der(14)T(4D3;14B)[8],-16[8][cp8]

4n cells: 67~77<4n>,X or XX,-1(3],-2[4],-3[4],Der(4)T(1E;4D3)X1[1], Der(4)T(1E;4D3)X2
[5],+Del(6B)X2[7],-7X1[1],-7X2[5],Del(8C3)X2[7], T(8C1;11C)X1[1],T(8C1;11C)X2[6],
Dic(9A.13A)X1[1],Dic(9A.13A)X2[6],-10[2],Del(10A)X1[1], Del(10A)X2[2],Del(10C)[4],
Del(11A-D)X2(7],Der(12;12) T(12A2;12A1)Del(12A2)X1[2], Der(12;12)T(12A2;12A1)Del
(12A2)X2[5],-13[3],Del(13C)X1[4],Del(13C)X2([3], Der(14)T(4D3;14B)X1[2],Der(14) T
(4D3;14B)X2[4],-15[5],-16X1[2],-16X2[5],-17[3][cp7]

Composite karyotype of tumor 10725

2n Cells: 40,XX[cp4]

4n Cells: 67~83<4n>,XX,Del(XB)X1~2[17],-1[5],+1[2],Del @F)X1~2[17],-3[5], Der(3)T
(3D;9E)X1~2[16],Der(3) T(3D;9EF;8C)[6],-4X2[16],Der(4) T(4D;15E) 4], T(4D;15E)X1~2
[16],Der(5)T(5E;3;11)X2[17],Del(6B) [3],+Der(6) T(5E;6B)X2[17],-7X2[17], Del(8B)[3],Der
(8)T(4;8C)X2~3[17],-9X2[17],10X2[17],T(10C;12C)X2[2], Del(11A2-D)X2[17], Der(11)T
(11G;14B)[2], T(11C;14B)X1~2[17],-12X2[17],-13X1~2[10],Der(14)T(11C;14B)[2],-15[4],-16
[7],-18[4],+19[2][cp17]

The long-range deletion event in chromosome 11 is highlighted in bold font. Please note that in
contrast to tumor 8717, tumorigenic cells with a 2n karyotype were not present in tumor 10725. It
is likely that the normal karyotype of 2n cells in this tumor represents that of dividing fibroblasts
that were present in the short-term culture.
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Figure 6. Fluorescence in situ hybridization to determine the local-
ization of the 7Trp53 gene (red) and the Sept9 locus (green) in ade-
nocarcinomas from two MMTV-Cre Brea ™ \Wap"?e° females. A
specific paint (MMU11) was used to counterstain individual frag-
ments of chromosome 11.

the current Mouse Genome Informatics sequence information, the
ErbB2 gene resides proximal of Breal on chromosome 11 (i.e., 57 <M
from the centromere) and therefore within the long-range deletion seg-
ment. The Western blot analysis, however, shows that the ErbB2 protein
expression was not significantly altered in Brcal-deficient cells that were
haploinsufficient in a large portion of chromosome 11 (Figure 7B).
The levels of ErbB2 expression in the mammary cancer cells were equal
to or lower than the expression level observed in nontumorigenic,
immortalized mammary epithelial cells (Figure 7B, HC11 cells in
lane 2). Therefore, the previously reported up-regulation of ErbB2
may not be a common feature or necessity in Brcal-deficient murine
mammary cancers.

Discussion

In the Breal conditional knockout model generated by Xu et al.
[7], the Cre-mediated deletion of exon 11 of Breal results in a shift
from a predominantly full-length transcript to a shorter mRNA splice
variant that encodes a Brcal protein of approximately 90 kDa [29].
This short Brcal isoform occurs, albeit at much lower levels, in the nor-
mal mammary gland. The sole expression of the Brcal Aexon 11 iso-
form in mammary epithelial cells is sufficient to initiate neoplastic
transformation after a long latency [7]. It has been recently suggested

A NC PC 8717 10725 11702 11704
1.5 kb
p53
08 Kb ActB
B MEF HC11 MEF 8717 10725 11702 11704
primary p53--
p19/Ar
B —— —_— . Mdm2
e o p53
e o p21
FaaFams -
ActB

- s e G s e e

Figure 7. Somatic mutations caused p53 deficiency in mammary cancers that are deficient in Brcal and haploinsufficient in chromo-
some 11. (A) Reverse transcription—polymerase chain reaction analysis of the transcriptional activation of the 7rp53 gene in four mam-
mary cancers from MMTV-Cre Brea 1™ Wap™®°"¢° mice; NC indicates negative control [total RNA from p53-deficient mouse embryonic
fibroblasts (MEFs)]; PC, positive control (total RNA from primary wild type MEFs). (B) Western blot analysis to determine the expression
of the p53 protein and its downstream target p21°P" as well as the expression of upstream regulators of p53 (p19/Arf and Mdm?2) and
the ErbB2 receptor tyrosine kinase. Beta-actin (ActB) served as a loading control. Cell lysates from primary wild type and p53-deficient
MEFs were used as positive and negative controls for p21 and p53 expression. Because wild type p53 is barely detectable in primary
MEFs, we used HC11 cell extracts as a positive control for the expression of mutant p53, which is known to be expressed at much
higher levels. HC11 cells also served as a control for the baseline expression of ErbB2 in untransformed mammary epithelial cells.
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Table 2. Mutations in the Coding Region of the 77p53 Gene in Four Independent Tumor Samples
of Breal-Deficient Mammary Cancers That Are Haploinsufficient in Chromosome 11.

Tumor No. Mutation Location

8717 Del(735-737) Del(R246) DNA binding domain

10725 wild type — —

11702 T927G transversion Y324Stop Homo-oligomerization domain
11704 C421T transition Q141Stop DNA binding domain

that the estrogen receptor (ERa) plays a role in premalignant trans-
formation in this model [30]. Elevated levels of estrogen resulted in
accelerated mammary cancer formation in Brcal-deficient mice that
lacked one functional 77p53 allele. Similar to this report, we also ob-
served that ERa was predominantly expressed in the benign, inflamma-
tory lesions that originated in WAP-Cre Brea ™ Wap™"* females.
Although these mammary tumors were palpable and relatively large,
they were distincdy different from adenocarcinomas of similar size that
originated in the MMTV-Cre—mediated Brcal-deficient mammary
cancer model that was haploinsufficient in chromosome 11. The latter
model seems to more closely resemble key features of human Breal-
associated breast cancers. They exhibit a basal phenotype as assessed
by the expression profile of keratins, they are ERa-negative, and they
do not exhibit an up-regulation of ErbB2. The differences between
these two models, therefore, do not support the notion that Breal-
deficient mammary cancers originate from ERa-positive precursor le-
sions. Recently, published findings by Jones et al. [31] demonstrate
that, although the overexpression of ERa accelerates Breal-associated
mammary tumorigenesis, exogenous levels of this steroid hormone re-
ceptor increases the incidence in preneoplastic lesions and mammary
cancers that are ERo-negative. Because it has been shown that ERa
can stimulate the proliferation of human and murine mammary epi-
thelial cells in a juxtracrine or paracrine manner [32-34], it is possible
that ERa promotes the neoplastic growth of adjacent Brcal-deficient
mammary epithelial cells that lack ERa.

ERa-negative adenocarcinomas that are Breal-deficient and haplo-
insufficient in chromosome 11 exhibited normal or reduced levels of
ErbB2, and we therefore concluded that the previously reported up-
regulation of ErbB2 is not a requirement for Brcal-associated mam-
mary cancer in mice. Similarly, the conditional deletion of the 3-prime
region of Breal (i.e., exons 22-24) resulted in ErbB2-negative lesions
as determined by immunostaining [35]. Whereas the long-range, Cre-
mediated deletion event in our model will result in a complete ablation
of exons 11 through 24 of Breal (Figure 14), the homologous chromo-
some 11, however, will retain the expression of the Aexon 11 isoform
of Breal. Hence, the sole expression of this splice form may not be
responsible for any differences in ErbB2 expression in Brcal-deficient
mammary cancers as suggested by McCarthy and colleagues [35].

Females deficient in Brcal that also lack approximately 60 cM of
chromosome 11 develop mammary cancer after a significantly shorter
latency compared to females that carry only a conditional mutation of
Breal. Nonetheless, the increase in tumorigenicity and penetrance of
the phenotype is quite similar to Brcal conditional knockout mice
that lack one copy of the 77p53 gene [7]. This observation suggests that
the loss of heterozygosity of 7ip53 is the predominant genetic event
responsible for an accelerated onset of the disease. In agreement with
this conclusion, somatic mutations in 77p53 in the remaining homol-
ogous chromosome 11 were tightly linked to the occurrence of mam-
mary cancers. Conversely, this finding might also suggest that this
large portion of chromosome 11 does not contain additional tumor-

suppressor genes that play a role in the initiation of Brcal-deficient
mammary cancer as previously hypothesized. Consequently, the search
for tumor-suppressor loci that modify the disease onset has to include
other regions of the genome.
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Figure W1. Mammary epithelial cells in benign lesions of WAP-Cre Brca1™ |//ap™°"° females lack expression of active Stat3. Immuno-
staining of tyrosine phosphorylated Stat3 in epithelial cells (A) and adjacent fibrous stromal cells (B) of the same hyperplastic lesion of a
multiparous female. Arrows in panel A indicate few isolated epithelial cells with active Stat3. Mammary tissue from a female 48 hours after
weaning the pups (C) served as a positive control. (D) Matching section of panel C, without the primary antibody against Stat3 (negative
control). The slides were counterstained with hematoxylin. Bar, 50 um.



Figure W2. Mammary cancers that are deficient in Brcal and haploinsufficient in chromosome 11 are of basal epithelial origin and lack
expression of estrogen receptor alpha (ERa). Immunofluorescence staining of SMA using an Alexa Fluor 488-conjugated secondary anti-
body (green) in a mammary cancer from an MMTV-Cre Brca 1™ Wap*7"¢° female (A) and Her2/neu—overexpressing control (B). The slides
were counterstained with DAPI (blue). Arrows in panels A and B indicate the positive staining of SMA in normal mammary epithelial cells
adjacent to the primary neoplasm. Bar, 100 um. (C—-E) Immunostaining of ERalin mammary tumors from an MMTV-Cre Brea 1™ \\/ap"¥nee
female (C), a Her2/neu—overexpressing mouse as an ERa-negative control (D), and a WAP-Cre Brea1™" Wap"e°° female (E). The slides
were counterstained with hematoxylin. Bar, 100 um.



p21 no primary AB

Figure W3. Brcal-deficient mammary cancers that are haploinsufficient in chromosome 11 lack nuclear expression of p21°P. Immu-
nostaining of p21 (A, C) as well as their corresponding controls without primary antibody (B, D) in neoplastic epithelial cells of tumor
11704 (A, B) and tumor 10725 (C, D). Insets show normal epithelial tissues adjacent to the primary tumor of the same histologic section.

The slides were counterstained with hematoxylin. Bar, 50 um.



